Wheat leaf rust EST sampling from all life cycle stages <u>Guus Bakkeren</u>¹, Guanggan Hu¹, Junhuan Xu¹, Rob Linning¹, Yehoshua Anikster², Tamar Eilam², Brent McCallum³, Travis Banks³, John Fellers⁴, Li Huang⁴, Sarah Munro⁵, Michael Mayo⁵, Brian Wynhoven⁵, Johar Ali⁵, Richard Moore⁵, Yaron Butterfield⁵, Jerry Liu⁵, Robert Kirkpatrick⁵, Jeff Stott⁵, George Yang⁵, Duane Smailus⁵, Steven Jones⁵, Marco Marra⁵, Jacqueline Schein⁵ ¹Agriculture & Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, BC, V0H 1Z0, Canada; ² Tel Aviv University, Israel; ³ Agriculture & Agri-Food Canada, Cereal Research Centre, Winnipeg, MB, R3T 2M9; ⁴ USDA-Manhattan, KS; ⁵ Michael Smith Genome Sciences Centre, Vancouver, BC, V5Z 4S6, Canada. bakkereng@agr.gc.ca BakkerenG@AGR.GC.CA We are in the process of increasing genomic resources for the obligate wheat pathogen, the leaf rust fungus *P. triticina*. Approximately 17,000 EST reads covering a teliospore stage from senescent wheat and pycnio- and aeciospore stages from an alternate host infection on *Thalictrum speciosissimum* (meadow rue), were added to our previously established, 30,000 reads-large EST database (holding ESTs from urediniospore, appressorium and other wheat infection stages). An additional 8,000 reads were generated from an isolated haustoria-specific cDNA library constructed by the Fellers' lab. The new spore stages contributed approximately 65%, 80% and 45% new unigenes to the existing database, respectively. From initial analyses it appears that aeciospores might express gene complements more similar to the urediniospore stages from wheat we sampled previously; this might illustrate the possible resemblance of function of these spores, i.e., infecting wheat. The pycniospores stage, which represents the sexual stage, displayed the largest pool of new genes. Other trends, comparisons and tools will be presented.